Tag: clean water

Conservation Future: Announcing the 2013 NatureNet Fellows

Nine young scientists — with specialties ranging from energy infrastructure to urban ecology, Kenyan pastoral techniques to nanotechnology — inaugurate a program designed to help kick-start conservation toward addressing the challenges facing people and nature in the 21st century.

Full Article

Osprey Cam: Reality TV Featuring Our Wild Neighbors

There are some new neighbors in town, and I can’t stop spying on them!

Allie and Bama recently moved to Orange Beach, Alabama. They live on prime real estate in this pristine beach town along the northern Gulf Coast. The climate is sub-tropical, grocery shopping is close-by, and the commute to work is more than manageable. They utilize locally sourced food for nourishment and have recycled building material for their humble abode. Their family is healthy and quickly growing with the arrival of two new offspring.

Allie, Bama and their newborns are not your typical beach-town family. They are birds of prey, called osprey (Pandion haliaetus) and in late spring this spring, The Nature Conservancy and our partners installed a camera to monitor their activities 24 hours a day, 7 days a week.

We have been invited into the home of Allie and Bama, and it has been the best unscripted reality show I’ve ever seen!

Full Article

Long Island’s Elephant in the Room: Nitrogen Pollution

“How about we initiate a ‘poop at work’ campaign?”

My colleague Carl was kidding about how to improve water quality on Long Island, but his joke went right to the heart of the problem. Many Long Island residents commute to New York City for work every day. Carl’s idea would solve the problem that we are grappling with on Long Island, as are many estuaries around the world: There is too much nitrogen in coastal waters and much of it is coming from inadequately treated human waste.

Social science research the Conservancy has carried out tells us that the average person living on Long Island cares deeply about clean water, whether it is to swim or fish in, or live near, or it is clean, freshwater we drink. Our social science research also tells us that the average Long Islander does not know:

  • where their drinking water comes from (answer: groundwater);
  • where their waste goes when they flush the toilet (answer: mostly septic systems, which are not designed to remove nitrogen, or sewage treatment plants in the more urbanized areas); and
  • that nitrogen from human waste, fertilizer and burning fossil fuels are polluting Long Island bays and harbors.

And if we do not tackle nitrogen and nutrient pollution on Long Island, our work could fail.

The Conservancy on Long Island has a long-standing marine program focused on estuarine restoration and coastal climate change resilience and adaptation. And by many counts we have been successful. We re-directed land acquisition to better protect estuaries. We acquired 13,500 acres of underwater land and transplanted over 7 million clams in over 100 sanctuaries. We supported science and policy to protect and restore seagrass, and we developed a network of monitoring sites to determine whether salt marshes are keeping pace with sea level rise.

Yet the ultimate success of all these projects hinges on nitrogen: Excessive nitrogen loading will impede our efforts over the long-term.

Why? Because regardless of the millions of hard clams returned to Great South Bay, it suffers from harmful algal blooms hampering the growth and adequate recruitment of bivalves. Regardless of the availability of land to which salt marsh can migrate, excessive nitrogen loading is a key driver of marsh loss. Regardless of successful passage of legislation we crafted to protect seagrass, science has found that impacts from excessive nitrogen and warming sea temperatures together inhibit seagrass growth and expansion even when physical impacts are limited.

Full Article

Flushing Out the Truth About Sewage and Coral Reefs

I never expected to be so intrigued and excited about poop, until a paper in PloS ONE came out in 2011 that demonstrated that a common human pathogen found in human wastewater, Serratia marcescens strain PDR60, caused white pox disease in elkhorn coral (Acropora palmata), the foundation species in Caribbean coral reefs.

Caribbean reefs have been plagued by disease in recent years and figuring out the source of the pathogens has been a challenge. Human sewage has long been a suspect, but the science behind this suspicion was always tenuous. I think most people would assume that exposing reefs to partially treated or untreated sewage couldn’t be a good thing, but there were no clear data that made the connection of human sewage to the degradation of corals so clearly until this paper.

Unfortunately, there is plenty of untreated sewage making its way into tropical seas.

In the Caribbean, most sewage isn’t actually treated, rather it is put into containers that sit in the ground — the ground being comprised of porous calcium carbonate rock (limestone) that is characteristically leaky.

In many places in the Pacific, the ocean is the toilet.

Full Article

Tech: Remote-Controlled Conservation

Illinois researchers searching for the best ways to reduce nitrates in drinking water are looking to an unlikely tool: a remote-controlled airplane.

In the Mackinaw River watershed in Central Illinois, The Nature Conservancy and partners are working to reduce high nitrate levels in water by filtering agricultural run-off through wetlands, a tactic that research shows can reduce nitrates by 50%.

These particular types of wetlands are specifically constructed to collect and retain water from tile drainage. Tiling is an underground system of tubing that drains wet fields. These tiles then drain water—and untreated nitrates and phosphates from the field—directly into the river.

The challenge: Tiling is underground. You can’t detect it with your eyes. Literally millions of miles of tile run under Illinois farm fields, so locating tile patterns in farm fields is imprecise at best.

Enter the remote-controlled airplane.

Full Article

Feature: Building Wetlands for Clean Drinking Water

Can building wetlands reduce dangerous high nitrate levels and thus provide clean, safe drinking water for thousands of people?

Yes.

But, when it comes to ensuring clean water, not all wetlands are created equal.

Biologists know how to restore great wetlands to draw in ducks and shorebirds. Restoring wetlands to also help people may require a different approach.

That’s the focus of an intensive research effort conducted by Nature Conservancy scientists on the Mackinaw River watershed in central Illinois. The wetlands—while providing wildlife habitat and healthier rivers—are being designed and tested to provide safe drinking water for the 90,000 residents of Bloomington, Illinois and surrounding communities where the town’s primary reservoir has had a history of high nitrate levels.

Full Article


Forest Dilemmas

Too many deer. Logging one tree to save another. Beavers versus old growth. Welcome to forest conservation in the Anthropocene. Beginning Monday, July 21, join us for a provocative 5-part series exploring the full complexity facing forest conservation in the eastern United States.

What is Cool Green Science?

noun 1. Blog where Nature Conservancy scientists, science writers and external experts discuss and debate how conservation can meet the challenges of a 9 billion + planet.

2. Blog with astonishing photos, videos and dispatches of Nature Conservancy science in the field.

3. Home of Weird Nature, The Cooler, Quick Study, Traveling Naturalist and other amazing features.

Cool Green Science is managed by Matt Miller, the Conservancy's deputy director for science communications, and edited by Bob Lalasz, its director of science communications. Email us your feedback.

Innovative Science

Investing in Seagrass
Marine scientists and fishers alike know that grass beds are valuable as nursery habitat. A new Conservancy-funded study puts a number to it.

Drones Aid Bird Conservation
How can California conservationists accurately count thousands of cranes? Enter a new tool in bird monitoring: the drone.

Creating a Climate-Smart Agriculture
Can farmers globally both adapt to and mitigate the impacts of climate change? A new paper answers with a definitive yes. But it won't be easy.

Latest Tweets from @nature_brains

Categories